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1. Introduction

Let X = [Xt:t > 0) be a regenerative process which we wish to
t -

simulate. Under mild regularity conditions the distribution of X con-
t

verges to the distribution of some limiting random variable (or vector) X.

This type of convergence is known as weak convergence and written

X t :X as t t c. Simulators speak of X as the "steady-state" con-

figuration of the system and are often interested in estimating the

constant r = Etf(X)), where f is a given real-valued function defined

on the state-space of the process X. The regenerative method of estima-

tion provides a means of constructing point and interval estimates for r;

see IGLEHART (1977) for an expository summary of this method.

The problem we consider in this paper does not involve estimation

of r, but rather the estimation of extreme values of the regenerative

process X. Suppose, for the sake of discussion we are simulating a

stable GI/G/l queue in order to estimate the maximum waiting time among

the first n+l customers; call this random variable W*. As n grows,
n

so will W* However, W *does not converge to a finite limit, but rathn n



diverges to +co. We will be interested in estimating the distribution

function of Wn  for finite, but large n. By the same token we might

wish to estimate the distribution of the maximum queue length during the

interval [O,t]. While this problem of estimating extreme values would seem

to be of great practical importance to simulators, we know of no papers in

the simulation literature which offer any guidance on the subject. This

paper will attempt to partially fill the gap.

We begin in Section 2 by summarizing a series of probabilistic

results in extreme value theory which will provide the theoretical basis for

the methods we propose. Section 3 discusses several methods for estimating

extreme values for the general regenerative simulation. In Sections 4 and 5

we treat the speciLal cases of the GI/G/l queue and birth-death processes

respectively. Theoretical results are available for these two classes

of regenerative processes that are useful in assessing the accuracy of

the estimation methods proposed. Section 6 contains the numerical results

for simulations of the WM/ queue carried out to illustrate the estima-

tion methods proposed.

2. Probabilistic Background

Let (F n:n > I) be a sequence of distribution functions (d.f.'s)

on the real line,mR = (-w, +0). This sequence converges weakly to a

d.f. G if lim Fn(x) = G(x) for all x EI which are continuity
n

n -+ co

points of G. We write Fn = G to denote this type of convergence. If

Xn (resp. X) is a random variable (r.v.) with d.f. Fn (reap. G), we
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also write X n X to denote this weak convergence. Sometimes it isn

convenient to write Xn * G to denote the same thing. The material

presented in this section can be found for the most part in detHaiN (1970),

currently the best comprehensive treatment of the subject.

Now let CXn:n > 1] be a sequence of independent, identically

distributed (i.i.d.) r.v.'s and denote the maximum of the first n r.v.'s

by M = max(X :1 < jn i. If each of the I 's has d.f. F, then Mn-I-- Jn

will have d.f. . We shall say that F belongs to the domain of

attraction of the nondegenerate d.f. G. and write F E g(G), if we can

choose two sequences of constants (a :n > 1) and [b :n > 1) with
n -n

a > 0 such thatn

(2.) Fn( anx + bn) - G(x)

as n -* oo for all x EM for which G is continuous. Equivalently,

F E (G) if (Mn-bn)/a G as n -. o. Thus for large n we would

approximate P(Mn < x) by G((%-bia n ). If a r.v. X has df,

F E L(G), we also write X E n(r).

A famous resuit in extremae value theory states that the only d.f.'s

G which can arise in (2.1) are of one of the following three types:

(2.2) (,XC ) --1o , _o
(exp(-x', x > 0

[I



(2.3) Ta(x) - I:x:{(x) , x
tl, x>O

(2.4) A(x) = exp(-e x)  x E ,

where in (2.2) and (2.3) a is a positive constant. Recall that two

d.f.'s G1 and G2  are said to be of the same type if there exist

two constants a and b. a > O such that Gl(x) = G2(ax + b) for all

x EIR. Thus aside from translations and scaling by a positive constant

the three d.f. 's given in (2.2) - (2.4) are the only ones that -n appear

in (2.1). This result on the three types of limit d.f. 's is usually

attributed to GNEDENKO (1943), however it was first formulated in this

way by FISHER and TIPPETT (1928).

The next logical result to seek is necessary and sufficient conditions

for F E O(G), where G of necessity is one of the three d.f. 's given in

(2.2) - (2.4). Furthermore, if F E g(G) we need a method for selecting

the two sequences (a n:n > 1) and (b :n > 1). To this end we first

define the right endpoint, x0 < +m, of the d.f. F as

x0 = sup(x:F(x) < 1)

Accession For

NIIS (mA&I

A d.f. F E 0(0 if and only if for all x > 0
U:a F]

(2.5) lim 1 - F(tx) -a' 0 i (7)-7x m,,

Availability Codes
-- Avail a~nd/or

Dist Special
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-'II......... .... ..11 , 111 1 ........ ... .. .... ..... .... .....a



If F E ,(:), then we can take

(2.6) an - inf(x:l - F(x) < In)

and bn = 0. A d.f. F E g(Ta) if and only if x< and for all

xc>O

(2 7) l rn I - F[x 0  - (tx) "] a
C -+C 1 - F(x0 -t-l)

If F E A(Ta), then we can take b = 0  and

a = x0 - inf(x:l - F(x) < I/n)

The final case, F E A(A), is the most important one for our simulation

applications. A d.f. F E £(A) if and only if

lim 1 - F(t + xf(t)) e-x for all x EM
t t x 0  1-F(t) , ,

where for t < x0

x0

f (I - F(s))ds

f() = t - F(t)

If F E k(A), then we can take
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b = inf(x:l - F(x) < 1/n)

and
f [I- F(t)]dt

b
n

a= -F(bn)

Alternative expressions are available for a and b . We can use a'
n n n

and b' provided a /a' --"l and (b -b')/a 0. Let Q (p) denoten n n ni n n n

the p-quantile of the d.f. Fn: for 0 < p < 1,

Qn(p) = inf{x:Fn(x) ? p)

Then if F E k(A), we can alternatively select

(2.9) bn = Qn( e)

and

-l

(2.10) an = Qn(e- e - Qn(e t

Furthermore, if F.E E(A) and x0 = +0, Mn/b n  l as n-*o. Many

of the classical d.f.'s such as the exponential, gamnma, normal, lognormal,

and logistic belong to k.(A).

Suppose F has x0 = + o and possesses an exponential tail:

(2.11) 1 - F(x) - b exp(-ax) , as x - c

6
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where a and b are two positive constants. Then it is easy to check

that (2.8) holds and F E Z(A). Using the expressions (2.9) and (2.10)

it can be shown that b and a can be selected as follows:
n n

-1

(2.11a) bn = a ln(nb) ,

and
-l

(2.11b) a = a
n

An interesting (and practical) situation arises if F is a discrete

d.f. as, for example, the geometric d.f. F(x) = I - exp(-[x]), x > 0,

where [x] is the integer part of x. In this case neither (2.5)* nor

(2.8) hold, and since x0 = +0, F does not belong to the domain of

attraction of any of the three types (2.2) - (2.4). However, a result

has been salvaged by ANDERSON (1970). Let a be the class of all d.f.'s

whose support consists of all sufficiently large positive integers. Then

for F e a,

(2.12) lim sup Fn(- x +b) < exp(-ex)
n -*o

and

Fn 1l b > -xa
(2.13) lim inf Fn(Q' x + b) _ exp(-e - ( x - ) )

n -- n

n~~ -+c

for some a > 0, all x, and some sequence (b n:n > 1] if and only if

:ira 1 - F(n) a
(2.14) &im1 .- i?.(LM e

n -
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When this condition holds, the constants. b can be selected as follows.n

For F F a and each positive integer n let h(n) = -log(l-F(n)) and

define h to be the extension of h obtained by linear interpolation, C

for x > 1. Then define for x > 1

Fc(x) = 1 - exp(-h(x))

Clearly F is a continuous d.f. and for sufficiently large x is
c

trictly increasing since F a. For x < I the F can be definedc
arbitrarily just so long as it is a d.f. In terms of Fc we can define

bn  for large n as the unique root of

1- F(b) I/n

If F E a and 1 - F(n) - b exp(-an) as n -+ (a,b > 0), then
-i

for b = a ln(nb) it can easily be shown using the method followeda

by HEYDE (1970) that for integer Z

(2.15) lim rP(M [_] n [ - exp(-e'a(-dn)) 0
n -e oo

where d b - [b ]. Thus for n large we would (ignoring a possible
n n n

continuity correction) use the approximation

a



P(Mn < Z + [bn] -xp(-e-a(9 dn))

or

(2.16) P(Mn < ] xp(-e- a ( 1bn))

Suppose now that we also have defined on the probability triple

(sQ,3,P) that supports the i.i.d. sequence (Xn :n > 1) a renewal process

(I(t):t > O) with mean time between renewals m (0 < m < oo). Then

the weak law of large numbers for renewal processes states that

:;t t m- as n -+o. Next set

Mt' = maxfX :l<j <A(t) .

The following useful result for this situation was obtained by BERMAN

(1962). If (Mn-bn)/aGn  G one of the three extreme value d.f.'s

(2.2) - (2.4), then as t -o

(2.17) (M'-b[ t] )/a ] Q Gl/m

This result provides a useful tool for extreme values of regenerative

processes. To be explicit suppose X = Xt :t > 0) is a regenerative

process defined on (n,3,P) and T P j > 1, is the time of the Jth

regeneration point of X with T = 0. Then the renewal process

(I(t):t > 0) which counts the number of regeneration points in (O,t]

is defined by

9



with A(O) = 0. For j > 1, let

M = supxT +-1<t < T

Since X is regenerative, the sequence of maxima, (R.:j > I, will be

i.i.d. Then if Lt = sup(X s:0 < s < t), clearly

(2.18) max(M:l < j < I(t)J <L <max(M:I j < 9(t) + I)

Combining the inequalities of (2.18) with the limit theorem of (2.17)

enables us to show that

(2.19) (Lt-b[t])/a[t] ,*Gl/m

where m = E[TI}, provided M1 E 4(G). Of course if MI E a, then the

weaker results of Anderson or Heyde are all that can be expected.

We conclude this section by summarizing the problems confronting

us for a regenerative processes with continuous state space. If M1+ E (G),

then we can use (2.19) to obtain the asymptotic (for large t) approxima-

tion

(2.20) P(Lt x) G at

10



Alternatively, we can also show that

(M(t) - b c))la M)',G

which when combined with (2.18) yields the asymptotic (for large t)

approximation

x - b
(2.21) P{Lt< x) G a 1(t))

-- a1(t)

This expression does not require an estimate for m as is the case

with (2.20).

If the simulation is run for n cycles, then (2.20) or (2.21) should be

replaced by

(2.22) max
l5j n 3- n

For (2.20), (2.21), or (2.22) to be useful, we must estimate a , and bn.

To use (2.20) we must also estimate m. The expected cycle length, m, can

of course be estimated by the sample mean of the cycle lengths observed. Sev-

eral methods for estimating a and b will be discussed in Section 3.n n

Finally, we must assess whether MI  (G) for one of the three d.f.'s
1

(G's) given in (2.2) - (2.4). For many simulations in which extreme values

are being estimated, the limit d.f.'s G will be either X or 0 , since the

maxima arising are unbounded (x0 . 4co). Our experience with specific examples

indicates that if the regenerative process is stable (converges to a non-

degenerate limit), then G - A; while if the process is "null-recurrent"

(m = E(T) = +o.), then G = a. However, in this case Gl/m(x) =
fa

for all x > 0 which indicates that a different normalization must be11J



used to obtain a nondegenerate limit. In any case, we note that if

X E L(O) with constants a' > 0 and b' = 0, then in X E O(A) with
n n

-I.
constants a = a and- b = in a' . We note in passing that the extreme

n n n

value behavior of some functions of a regenerative process can be handled

in the same way. If the state space of the regenerative process is discrete,

then we shall only consider the situation in which the d.f. of M + E a and
1

P(X' > nj - b exp(-an) as n for some a,b > 0. In this case we can

approximate the d.f. of or max{M :1 < j < n} by using (2.12) and (2.13)

or (2.15) and (2.16).

3. Statistical Estimation Problem

We now present some procedures which can be used to estimate the d.f.

of extreme values occurring in a regenerative stochastic process belonging

to a (known) domain of attraction. (The methods will be illustrated for

the case of maximum values, but analogous procedures could be used for

minimum values.) The basic idea underlying all the procedures is to

simulate a process in order to form an empirical d.f. of say the maximum of

the process over a given period of time or number of cycles, and to regress

this against the functional form of the appropriate extreme value

distribution. The methods differ as to how the empirical d.f. is formed

and how the regression is done. The applicability of the methods depends

on the process lying in the domain of attraction of a nondegenerate d.f.

For a process taking on positive values, but having right endpoint x0 < ,

convergence t6 a nondegenerate extreme value distribution would not hold.

This would be the case for instance for the queue length process in a

system with finite waiting room.

12
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3.1. The Continuous State Space Case

Suppose we are interested in the maxilm of a continuous state space

regenerative process over n cycles. Choose an integer k > n, (the

choice of k will be discussed later) and simulate ', cycles of the pro-

cess, yielding individual cycle maxima Ylk > y2,k > "' > Yk,k" A sample

of k cycles contains (k) subsets of n cycles. We then use the

simulation results to find the maximum of the process over each subset of

n cycles. The only yi,k's which can be maxima for some subset of n

cycles are Y1 ,k,'..,ykn+1,k * As explained below, we are only interested

in y1 ,k,.'.,Yiok where the predetermined number i0  is usually

considerably less than k-n+l. Thus in performing the simulation, we need

-.ily keep track of yl,k,"'Yio k' and the continuous state space assump-

tion can be relaxed to the distinctness of yl,k,',Yiok. (For instance

the customer waiting time process of a queueing system may have an atom at
0; however this usually need not concern us.) Now observe that yi,k is

k-ik
the maximum value in (k-l) of the (k) subsets of n cycles,

i - 1,...,k-n+l. Thus yl,k is the maximum value in a fraction n/k

of the (k) cycles, Y2 ,k is the maximum value in a fraction

n(k-n)/(k(k-1)) of the (k) cycles, etc. Let E (X) (suppressing k)
n n

be the empirical d.f. of the maximum of the process over n cycles. Then

En(Yl,k 1,

En(y 1 - n/k k-n
n 2,k'

E k-n _ n(k-n) k-n k-n-1
n(Y3,k) k k(k-1) k k-1

and generally En(Ylk) En(y- ) k-l+2 for i 2,...,i. Thus

En(yi,k) can be obtained by a simple recursive computation.

13



It is desirable to have the values En (yi,k) diminish slowly enough

from I to 0 so as to provide good upper quantile information for the re-

gression procedure. Thus we want a rather high k/n ratio (say, at least

10). But n should be large enough so that the extreme value distribution

provides a good approximation to the maximum of the process over n

cycles. So En(Yi,k) is very small for many of the latter values of the

k-n+1 possible i's. Using too many yi,k s in the regression would tend

to drown out the effect of the first few, and could be a source of noise

when En(Yik) is very close to 0. Thus we only consider yik for
i < i0, where i0 M max{i : E n(yi,k ) > } for e such as .001.

Consider the nonlinear regression problem of selecting a a and bn n

so as to obtain the least-squares fit of A((xi - bn)/an) to En (x ), when

A is the appropriate domain of attraction, for data points xi M Y2,k'..

Y i k" For short we shall denote this problem by
0,

E n(x ) m exp(-exp(-(xi - b n)/a n)).

When a is the appropriate domain of attraction, the problem becomes

E (x) exp(-(x /a')-).
nii

(Note that the data form a dependent sample.) The point yik is not used

in the regression since En(Ylk) - 1, which effectively makes Ylk the

right endpoint x0, even though A has a right endpoint of + * . This

manifests itself in the regression by forcing bn  to = or an  to 0.

Refer to the above procedure (for a fixed k,n, and iO(c)) as the basic

14

'1



nonlinear regression procedure. In the case of domain A, this procedure

provides 'estimates an , b of the norming constants for A. An alterna-

tive procedure, referred to as the basic linear regression procedure, is to

(take a double -in transformation and) perform the linear regression

-ln(-ln(E U (h i c x + d n, with xt as above, to obtain estimates c n

and d . This fit can be used directly, or equivalently note that we can

form estimates a - c-, c - of the norming constants for A.
n n n n n

Recall that if X e ff(O) with parameters a' > 0 (and b' - 0)
an 0)a-i

then in X S o&'(A) with norming constants a a- and b a In a

Thus performing the nonlinear regression procedure on X, based on

-a
X E C(o ), would lead to En(xi) - exp(-(xi/a.) ) in order to estimate

a' . Performing the nonlinear regression procedure on In X, based onan

In X eA(A), would lead to En(ln xI) m exp(-exp(-(ln xi-bn)/an)) in order

to estimate an, bn . On noting that En(In x i) - En(Xi) by strict mono-

tonicity of in, it is apparent that the results are the same whether we

perform the (nonlinear) procedure for X based on X e 00 ) or ona

in X based on in X O(A). The same is true for the linear procedure

since E(x) exp(-(x /an)-a ) is transformed into
ni in

-In(-In(En(x)) a In x, - a In a'.

If one were unsure as to which (or any) domain of attraction is appropri-

ate, regressions corresponding to all the candidate extreme value distri-

butions could be performed and the adequacy of the fits evaluated. For

instance, we could perform one regression using yi,k's and another using

In Yi,kis.

Consider the specialization to & (A) and assume the exponential tail

assumption (2.11) holds. We can use either the basic linear or the

15



nonlinear regression procedure to obtain estimates an, bn if n is large

enough for the approximation (2.22) to be good. Then without further

simulation or regression, we can use (2.11a) and (2.11b) to obtain

estimates an, - a n V, - anln(nln) + The linear or nonlinear

regression procedure generally increases in accuracy with k/n, but the

relation (2.22) deteriorates as n decreases. Thus for a fixed amount of

simulation k, n should be chosen as small as the adequacy of (2.22)

allows.

The relations (2.11a) and (2.11b) suggest a possible variation to

either the basic linear or nonlinear regression procedure: simulate k

cycles and substitute a - a - 1 , -alln(nb), in the right-hind side ofn n

the regression. Now form the empirical d.f. as in the basic procedure for

a fixed n - nj. Do this for several values of nj, pool the sample, and

-l
perform one regression to estimate a , b. Assuming (2.11a) and (2.11b)

hold adequately, this variation extracts more information from a given

amount of simulation. This comes at the cost of increased complexity, and

has not been attempted.

3.2 Modifications for the Discrete State Space Case

Now assume the regenerative process of interest has a discrete state

space and + c a. If the basic (continuous state space) procedures were

used, there could now be ties among the yi,k's. So we simulate k cycles

of the process and let y1,k > 72,k >".> yk be the distinct individual

cycle maxima, occurring respectively in Nl,k,...,Njk di.ferent cycles.

The number of N i,k's could be quite small even for k layge. Lettingi-k

NO,k  0 and mi,k  E N IkYi is the maximum value in

16



i k-m

j=1 n-l

of the (k) subsets of n cycles, for i< 1. Thus En(lk 1 , and if

- -na1,k

for instance N = 2, then E (Y k-n * k- -
l,k U 2,k' k k-I'

etc. So E n(Yi,k) can still be obtained by a simple recursion. In

practice, we would only consider yi,k for i, i0, where

in M max{i : E n(Yi,k) > el for some small e . Now i0  is a function of

Coe sample path since the number of duplications is not known a priori.

';2il the procedure where we throw out Yl,k and do a regression as in the

basic (continuous state space case), the basic full delete procedure

(either linear or nonlinear). The basic partial delete procedure may not

completely throw out yl,k" Instead, we consider a modified empirical d.f.

as follows: if N ,k > 2 and say for example N1,k - 3, then take

k-n k-n-i k-n k-n-i k-n-2
En(yl,k) = k k-i and En(Y2,k) = -k etc.

We only alter E(y ), leaving En(Yik) , i > 1 as before. If
n ,kn k

N1, k - 1, the basic full and partial delete procedures are equivalent;

otherwise they differ only in the use of an additional regression data

point by the partial delete procedure. Most of the variations mentioned in

the continuous state space case are also available in the discrete case.

After having obtained estimates an, b n we would approximate

P{ max ej < x) by exp(-exp(-anl(x + 6-b ))) where 6 represents a
1_j<n J- n

continuity correction such as 6 - 0 or 1/2. Estimating the d.f. of

max M+ is tougher in the discrete than the continuous case for the
1<j<n J

17



following reasons: (i). a continuity correction (6) is needed, (ii) true

convergence to the extreme value distribution is tnot attained, suggesting

that the approximation on which the regression equation is base!i may not be

as good as in the continuous case, and (iii) due to duplications associated

with the y ik is, the number of data points for the regression is greatly

reduced relative to the continuous case, for a given k,n, and cutoff c.

The basic procedures are illustrated in Section 6 for the M/M/l

queue. Before leaving this section we point out some other relevant

references. The reliability theory literature contains many references on

the problem of testing whether observations come from an exponential or

extreme value d.f. and of estimating the associated parameters. Two useful

places to find such papers are EPSTEIN (1960) and MANN, SCHAFER, and

SINGPURWALLA (1974), Chapter 5. PICKANDS (1975) has developed a method for

determining which G d.f. is appropriate for a given set of observations.

His method uses a random and increasing number of the y J'5' as n

increases. The method is expensive computationally and emphasizes an

aspect of the extreme value problem which is not of great concern for

simulation. Finally, WEISSMAN (1978) contains another method for estimat-

ing the constants a nand bn

4. The GI/G/ 1 Queue

The GI/G/l queue and the birth-death processes treated in Section 5

are among the very few regenerative processes for which we know the

values of a and b .For this reason these processes are excellent
n n

candidates f or testing the effectiveness of the estimation procedures

proposed in Section 3

18



In the GI/G/1 queue we assume customer 0 arrives at to = 0,

finds a free server, and experiences a service time vo . Customer n

arrives at time tn  and experiences a service time vn. Customers are

served in their order of arrival and the server is never idle if customers

are waiting. Let the interarrival times t. n-l = n > 1. We

assume the two sequences (v :n > 0) and (u :n > 1) each consist of
n -n -

i.i.d. r.v.'s and are themselves independent. Let E un3 = and
n

-1
Etvn3 = , where 0 < X, 4 < 0. The traffic intensity p = ?V is

assumed to be less than one. We exclude the deterministic system in

which both the v's and un's are degenerate. Let the waiting time of

the nth customer be W the workload (or virtual waiting time) at

time t be Vt, and the number of customers in the system at time t

be Q Also set Wn = max(W :0 j n), V* = sup(V:O < s< t),

and Qt =sup(Qs:O0 < s < t). Let X n1 Un n >l , and set

S 1 + -. + X for n> 1 and SO = 0. If n denotes the number

of customers served in the jth busy period, then n1  is related to the

partial sum process (S n:n > 0) since

n inf(n > O:S n  0)

When p < i we have m = E(n1 < w. Also -S is the length of the

first idle period. We assume that Yi has an aperiodic d.f. (support

is not concentrated on a set of points of the form 0, h, +.2h, ±h, ... ),

that there exists a positive number K such that E(exp(iX 1)) = I,

and 0 < =IE, exp(KX,)) < . These assumptions will normally be

satisfied if the d.f. of v0  has an exponentially decaying tail; e.g.,
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when v0  has a gamma distribution. Under these conditions we know

(see IGLEHART (1972)) that

(J.1) (W - n)/K

and

(4.2) (V - K- In c2 t)/ -I*AVm(x)

where

i1 - E(e KSnl'
2

1  K K M

and
KV 0

c E(e 0cl

Thus to use (4.1) and (4.2) for estimating the d.f.'s of W* and Vt
n

we need only estimate m and Ee KSn, assuming that K, K and

E~eKv0 ) can be calculated numerically. In the special case of M/G/i

queues no estimation is required, since m = (l-0) "  and E(eKSnl)

= 7V(N+K). If the simulation is carried out for a fixed number of cycles,

then counterparts of (4.1) and (4.2) hold with the exponents of A

removed.

The queue-length process Q t:t > 0) is discrete-valued and the

associated d.f. of m+ E a. Hence a limit theorem comparable to (4.1)

or (4.2) does not exist. Instead we must seek results like (2.12) and

(2.13) or (2.15) and (2.16). Unfortunately, these results are only

known fcr the /G/Il and GIM/I queues; see COHEN (1969), Theorems 7.2

and 7.5. Let = sup(Q :T < t < T Then for an M/G/1 queue
j J- - T9

the counterpart of (2.16) is
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-a( X.-bn)
(4.3) P( max M < = exp(-e ) ,

l<.j<n

where

a = in ((?v+K)/ ,)

and

b =a In (c2 n)

On the other hand, for GIIM/I queues (4.3) holds with a =n((U-K)l)

and the same value for b . Tables 1 and 2 contain the values of m K
n

C, c1, and c2  for the M/M/l and M/E2/1 queues as a function of

the traffic intensity p.

(4.4) EXAMPLE. M/M/l queue. For this queue we are able to calculate

exactly the distribution of associated with the waiting time process,

the virtual waiting time process, and the queue length process. The tail

of the distribution of M+ for the waiting time process is given in COHEN

(1969), p. 606, or can be calculated directly from results in IGLEHART

(1972), p. 630. The result is

-kx
P{ > x} " p(l-p)e-kx as x t

-lp 2 e -kx

The corresponding --ault for the virtual waiting time process is given in
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TABLE 1

Parameter Values for M/N/1 Queue with =10

m K K C1  c 2

.1 1.11 9 .900 .09 .9

.2 1.25 8 .400 .16 .8

.4 1.67 6 .150 .24 .6

.5 2.00 5 .100 .25 .5

.6 2.50 4 .o67 .24 .4

.7 3.33 3 .043 .21 .3

.8 5.00 2 .025 .16 .2

.9 10.00 1 .011 .09 .1

.95 20.00 0.5 .005 .0475 .05

.99 100.00 0.1 .001 .0099 .01
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TABLE 2

Parameter Values for NVE 2 /1 Queue with = 10

p m K 4 c c
K 1 2

.1 1.11 15.00 .3375 .1562 2.5

.2 1.25 12.60 .2016 .2346 1.7119

.3 1.43 10.61 .1395 .2874 1.3038

.4 1.67 8.83 .1012 .3179 1.0201

.5 2.00 7.19 .0741 .3263 0.7957

.6 2.50 5.64 .0534 .3118 o.605o

.7 3.33 4.16 .0367 .2733 0.4357

.8 5.00 2.73 .0227 .2o94 0.2809

.9 10.00 1.35 .olo6 .1188 0.1366

.95 20.00 0.67 .0051 .0630 0.0674

.99 100.00 0.13 .0010 .0132 0.0134
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[41, p. 606, or can again be calculated from [10], p. 632. The result is

-kx

P(+- > x = (1-p)e (1-p)e
-k x as x +

4 pe-kX

The corresponding result for the queue length process is given in Example

(5.4). 4

5. Birth-Death Processes

A second class of regenerative processes for which theoretical

results are available is birth-death processes in discrete or continuous

time. Let (X n:n > 0) be a discrete time Markov chain with state space

E = (0, 1, 2, ...) and transition probabilities given by

q i. = i-

(5.1) P = Pj = i+l

0 other j,

where qO = 0, Po = I and the other q.'s and p.'s are positive.

This chain will automatically be both irreducible and periodic. Further-

more, recall that it will be recurrent if and only if

7z ( -j p)- =
J=l J

where n0 = 1 and i = (PO "'" pj-1 )/(ql ".. qj). We assume the chain

is recurrent. It will be positive recurrent if and only if
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j0

j=O

Next define

Tl(k) = inf(n > O:X = k), k E En

the first entrance time to state k. Let P.) = P{ " IX = i}, the

conditional probability of an event, given X = i. Then our concern

here will be in the probability, given X0 = i, of the Markov chain

entering state n before it enters state 0. Let this orobability be

denoted by

r i(n )  = P i (-l(n) < -ri(0)] i E (IY 2, ... , n-1).

Fortunately, this probability has been calculated and in particular

n-i

r0 (n) = rI(n) ( + Z (p.Pi)-) " I

i= I

see CHUNG (1960), p. 68. Note that lim r0 (n) = 0 when the chain is

n --. o

recurrent, in keeping with our intuition. Define

MI = sup(Xn :0 < n < T(0) - 1

Then

+ ~ n 1
(5.2) Po(MI > n) = r0 (n) = T i , d as n -4o

i=O
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Suppose now that we have a birth-death process (X :t > 0): a
t

continuous time Markov chain with state space E = (0, ... 1 and

embedded jump chain whose probabilities are given by (5.1). As above,
I

define the first entrance time to state k and the maximum in the first

cycle by

TI(k) = inf(s > O:X S k, Xs = k

and

+
Mi = sup(X t: 0 < t < T1(0))

Because of the path structure df the birth-death process, it is easy to

see from (5.2) that

(5.3) PO0(M I> n) 0 1 +\ o  i i) ,r

where -A [resp. 4i] are the birth (resp. death) parameters and

3T 0 =  i = (X01 ... Ni-1/ ,IT2 4i ) . The same argument can of

course be used to show that (5.3) also holds for semi-Markov processes

with embedded jump'chain whose probabilities are given by (5.1).

(5.4) EXAMPLE. NM//s queue. The queue-length process, (Q :t > O),

is a birth-death process with parameters ?j X and pj = (j A

j > 0. Assume the queue has traffic intensity p = %/s < 1, a necessary

and sufficient condition for recurrence. Then from (5.3)
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PO(M+ > n -- I
o 1> i=O

Asymptotically, as n

( s /s:)n -  €= I

P 0 (4+> n) -

(sS(,-,)/s:), n < .

Thus for p < I we can use (2.16) to obtain

P0 max M+ < exp(-e-aZ-bn))
1<j < n 3--

-I -li

where a = in P and b = a in (n s (l-p)/s'). Note that this is

consistent with (4.3).

27
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6. Numerical Results

A simulation of the M/M/I queue was performed to help assess the

effectiveness of the basic procedures proposed in Section 3. Our goal is

+ +
to estimate the d.f. of max M where M is either the maximum waiting

t l<< j
time W, virtual waiting V, or number of customers Q in the system in

cycle j. The processes {W : n > 0} and {V : t > O} have continuous
n t -

state spaces, {Qt : t > 0) has a discrete state space, and A is the

appropriate extreme value distribution in all three cases. Using estimates

an ' b ,we approximate P{ max M4 < x) by A((x + 6 -bn)/a n ) where 8-0nl<j<n i - i T

for Wn  and Vt. and we try 6 - 0 and 6- 1/2 for Qt Theoretical

values of a and b as well as the exact values of P{ max Mj < x}
n n l-<n i-

are available from the results in Sections 4 and 5. All notation and

conventions in this section are as in Section 3.

The random number generator used was the DEC-20 FORTRAN "RAN"

function. In the terminology of Section 3, all experimental results

reported are for basic linear or nonlinear regression procedures. Several

values of k,n, and traffic intensity p were tested. Both the linear and

nonlinear regression procedures were tried on Wn, while only the linear

regression procedure was tried on Vt and Qt. The nonlinear regression

was performed using SUBROUTINE LSQFDN of the National Physical Laboratory

Algorithms Library. Both full and partial delete as well as continuity

corrections of 6 - 0 and 6 - 1/2 were tried on Q For Qt , a cutoff

of - .0001 was used. For W and Vt, a cutoff of c - .001 was

used. Thus for W and Vt, i0  is as follows:
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k n i0

100,000 2000 342
100,000 1000 686
50,000 1000 341
20,000 1000 135
50,000 250 801*
25,000 250 678
10,000 250 270

The starred entry indicates that for k - 50,000, n - 250, £0 corresponds

to C - .01755 rather than to c - .001. Note that in all cases, there

were sufficient points for the regression for Q t; and yl,k,...Yi0,k

were always distinct for W and V .ni t

Tables 3-5 contain the results of the simulation for estimating a

and b . Tables 6-10 contain the estimates of P{ max M < x} by
1<j< -

A((x + 6 - b )/a ), using the estimated values of an, b shown in Tables

3-5. The entries contained in the tables are the sample means of the

various estimates over the number of replications and the half-length of a

symmetric 90% confidence interval about the sample mean. For example, in

Table 4, take k = 50,000, n - 1000, and 50 replications. Then a 90% con-

fidence interval for a000 based on 50 replications of the linear

regression procedure is [.1966 - .0039, .1966 + .00391. The corresponding

true value of a1000 - .2. Tables 6-10 report the true values of

A((x - b )/a ) and P{ max M < x) for various x, as well as the
n n 1<j<n J -

corresponding values of A((x + 8 - b )/a ) using estimated a b For
n n n* ' .Fo

example, in Table 9, take k - 50,000, n - 250, and 100 replications. Then

the true values of A((9 - b2 50)/a2 50) and P{ 1_max Mj < 9)

are respectively .7834 and .7831, while the sample mean of

A((9.0 - b n)/a ) is .7832 with a corresponding 90% confidence interval

half-length of .0062.
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TABLE 3

Estimates of an and bn for {Wn  n > 0) In the M//I queue with g a 10

true values liner regression nonlinear regression

V/hrepl. p an bn an an ;

100,000/1000/50 .5 .2 1.1043 .1987 1.1069 .1981 1.1076
.0021 .0035 .0028 .0037

50,000/1000/50 .5 .2 1.1043 .1974 1.1043 .1969 1.1053
.0037 .0055 .0050 .0054

20,000/1000/50 .5 .2 1.1043 .1937 1.0993 -1913 1.1000
.0061 .0094 .0079 .0084

50,000/250/100 .5 .2 .8270 .1980 .8303 .1984 -8308
.0016 .0019 .0015 .0019

25,000/250/100 .5 .2 .8270 .1967 .8288 .1961 .8290
.0017 .0029 .0020 .0029

10,000/250/100 .5 .2 .8270 .1941 .8255 .1920 -8264

_.0027 .0046 .0031 .0049

100,000/1000/50 .9 1.0 4.4998 .9717 4.4991 .9761 4.4980
.0115 .0214 .0150 .0214

50,000/1000/50 .9 1.0 4.4998 .9825 4.5324 .9840 4.5159
.0163 .0276 .0228 .0275

20,000/1000/50 .9 1.0 4.4998 .9748 4.5324 .9648 4.5245
.0252 .0443 .0382 .0460

100,000/2000/50 .9 1.0 5.1930 .9770 5.1784 .9714 5.1807
.0160 .0292 .0232 .0304
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TABLE 4

Estimates of an and bn for (Vt : t > O) In the H/H/1 queue with Lu 10

true values linear regress i on

k/n/frepl. p an bn an bn

100,000/1000/50 .5 .2 1.2429 .1980 1.2451
.0021 .0034

50,000/1000/50 .5 .2 1.2429 .1966 1.2422
.0039 .0057

20,000/1000/50 .5 .2 1.2429 .1917 1.2371
.0062 .0093

50,000/250/100 .5 .2 .9657 .1977 .9692

.0016 .0018

25,000/250/100 .5 .2 .9657 .1966 .9673
.0018 .0029

10,000/250/100 .5 .2 .9657 .1946 .9648
.0027 .0047

100,000/1000/50 .9 1.0 4.6052 .9713 4.6050

.0115 .0214

50,000/1000/50 .9 1.0 4.6052 .9819 4.6308
.0163 .0276

20,000/1000/50 .9 1.0 4.6052 .9758 4.6401

.0251 .0442

100,000/2000/50 .9 1.0 5.0695 .9763 5.2840
.0161 .0293
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TABLE 5

Estimates of a. and b. for (Qt : t O} in the 1/14/1 queue with 4 a 10

full delete partial delete
true values linear regression linear regression

k/n/Prepi. p an an ann0n

100,000/1000/50 .5 1.4427 8.9658 1.4350 8.9779 1.4358 8.9763
.0409 .0394 .0405 .0395

50,000/1000/50 .5 1.4427 8.9658 1.4224 8.9438 1.4224 8.9426

.0519 .0536 .0530 .0540

20,000/1000/50 .5 1.4427 8.9658 1.3783 8.8994 1.3801 8.8980

.0611 .0771 .0609 .0758

50,000/250/100 .5 1.4427 6.9658 1.4347 6.9853 1.4336 6.9842

.0253 .0179 .0212 .0180

25,000/250/100 .5 1.4427 6.9658 1.4224 6.9725 1.4179 6.9695
.0288 .0252 .0301 .0257

10,000/250/100 .5 1.4427 6.9658 1.4039 6.9491 1.3986 6.9437

.0345 .0379 .0348 .0374

100,000/1000/50 .9 9.4912 43.7087 9.2227 43.7424 9.2250 43.7421

.1945 .2232 .1921 .2226

50,000/1000/50 .9 9.4912 43.7087 9.3229 43.9337 9.3203 43.9316

.2351 .3107 .2365 .3116

20,000/1000/50 .9 9.4912 43.7087 9.1984 43.8827 9.2080 43.8893

.3155 .4561 .3178 .4580

100,000/2000/50 .9 9.4912 50.2875 9.2249 50.1689 9.2261 50.1684
.2333 .3108 .2297 .3085
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TABLE 6

Estimates of P(Max + c x) for {W :n ' 0) In the M/I/i queue with g 10,p. .5

A( Ix-bI/SnI/x

P( max M+ 
( x)1.! J-

regress ion
method k/n/frepl. .25/1.0390 .50/1.1776 .75/1.3535 .90/1.5544 .99/2.0243

.2493 .4996 .7499 .900 .9900

linear 100.000/1000/50 .2457 .4971 .7489 .8997 .9900
.0052 .0072 .0062 .0037 .0007

nonlinear 100.000/1000/50 .2442 .4966 .7492 .8999 .9899
.0054 .0079 .0074 .0045 .0008

linear 5O,04j/1 000 /50 .2511 .5040 .7535 .9015 .9899
.0082 .0117 .0104 .0062 .0012

nonlinear 50,000/1000/50 .2489 .5035 .7539 .9014 .9896
.0077 .0121 .0116 .0074 .0015

line - 20,000/1000/50 .2626 .5193 .7638 .9053 .9897
.0136 .0194 .0174 .0107 .0022

nonlinear 20,000/1000/50 .2576 .5208 .7683 .9079 .9898
.0131 .0188 .0174 .0110 .0023

A((x -bn)/an)/X

P( max M+ < x)
1<J<n J-

.25/7617 .50/.9003 .75/160762 .90/1.2771 .99/1.7471

.2471 .4986 .7496 .8999 .9900

linear 50,000/250/100 .2438 .4963 .7493 .9003 .9901
.0027 .0042 .0039 .0023 .0005

nonlinear 50.00/250/100 .2432 .4951 .7481 .8996 .9900
.0028 .0040 .0038 .0023 .0005

linear 25.0Og/250/100 .2464 .5002 .7525 .9020 .9903
.0042 .0060 .0052 .0030 .0005

nonlinear 25,000/250/100 .2454 .5001 .753t .9025 .9904
.0045 .0060 .0053 .0032 .0005

linear 10,000/250/100 .2529 .5092 .7593 .9052 .9906
.0070 .0097 .0082 .0049 .0008

nonlinear 10,000/250/100 .2494 .5087 .7615 .9071 .9909
.0076 .0098 .0081 .0048 .0008
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TABLE 7

Estimates of P(max M+ < x) for {W n 3, 0} In the lt/?41 queue with i u10, p * .9

A (x-bn)/an)/X

P( max M < x)
1l jcn J

regress I on
method k/n/frepl. .25/4.1732 .50/4.8663 .75/5.7457 .90/6.7502 .99/9.1000

.2454 .4977 .7494 .8999 .9900

linear 100,000/1000/50 .2484 .5049 .7577 .9054 .9910
.0065 .0089 .0074 .0042 .0007

nonlinear 100,000/1000/50 .2492 .5050 .7569 .9045 .9907
.0065 .0089 .0079 .0049 .0008

linear 50,000/1000/50 .2415 .4952 ,7490 .9001 .9900
.0079 .0116 .0101 .0059 .0010

nonlinear 50,000/1000/50 .2446 ,4990 .7514 .9006 .9897
.0082 .0117 .0111 .0069 .0012

linear 20,000/1000/50 .2422 .4968 .7491 .8991 .9894

.0131 .0184 .0161 .0094 .0017

nonlinear 20,000/1000/50 .2442 .5045 .7558 .9012 .9688

.0132 .0201 .0191 .0119 .0023

A((x-bn)/an)

P( max M+ < x)
1<j<n J -

.25/4.8663 .50/5.5595 .75/6.4389 .90/7.4433 .99/9.7931

.2477 .4989 .7497 .9000 .9900

lInear 100,000/2000/50 .2552 .5100 .7590 .9049 .9906
.0090 .0121 .0101 .0059 .0010

nonlinear 100,000/2000/50 .2539 .5112 .7607 .9055 .9905
.0092 .0132 .0119 .0070 .0012
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TABLE 8

Estimates of P~max M x) for (V t > 0) in the M//IW queue with P 1 0,
I _

using linear regression

A( (x-bn)/an)/x

PC max M+ < x)

k/n/frepl. p .25/1.1776 .50/1.3162 .75/1.4921 .90/1.6930 .99/2.1630
.2493 .4996 .7499 .9000 .9900

100,000/1000/50 .5 .2459 .4982 .7503 .9006 .9901
.0050 .0072 .0062 .0037 .0007

50,000/1000/50 .5 .2523 .5062 .7555 .9025 .9900
.0082 .0122 .0111 .0067 .0012

20,000/1000/50 .5 .2631 .5224 .7676 .9077 .9902
.0134 .0196 .0174 .0106 .0020

.( (X-bn:'/an)/X

PC max I
+ < x)

<J<n J -

.25/.9003 .50/1.0390 .75/1.2148 .90/1.4157 .99/1.8857

.2471 .4986 .7496 .8999 .9900

50,000/250/100 .5 .2430 .4959 .7494 .9005 .9901
.0027 .0040 .0039 .0025 .0005

25,000/250/100 .5 .2466 .5005 .7528 .9021 .9904
.0042 .0062 .0054 .0032 .0005

10,000/250/100 .5 .2518 .5076 .7579 .9044 .9905

.0070 .0097 .0082 .0049 .0008

A( (x-bn)/an)/X

PC max M+ < x)I _J <n -

.25/4.2785 .50/4.9717 .75/5.8511 .90/6.8555 .99/9.2053

.2454 .4977 .7494 .8999 .9900

100,000/1000/50 .9 .2481 .5048 .7576 .9054 .9910
.0065 .0089 .0074 .0042 .0007

50,000/1000/50 .9 .2414 .4953 .7491 .9002 .9900
.0079 .0116 .0100 .0059 .0010

20,000/1000/50 .9 .2414 .4958 .7484 .8987 .9893
.0129 .0184 .0159 .0094 .0017

,it (x-bn)/8n)/Ix

PC max t4 < X)I _J. in J-

.25/4.9717 .50/5.6648 .75/6.5442 .90/7.5487 .99/9.8985

.2477 .4989 .7497 .9000 .9900

100,000/2000/50 .9 .2550 .5100 .7591 .9050 .9906
.0090 .0117 .0102 .0059 .0010
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TABLE 9

Estimates of P(maxJM+ < x) for {Qt : t > 0) in the K/4/I queue with t10,

p a .5, using full delete linear regression, with continuity correction 6 - 0

A( (x-bn)/an)/x

P( max M + < x)
l<J<n J

k/n/frepl. .3766/9 .6137/10 .7834/11 .9408/13 .9924/16
.3761 .6135 .7833 .9408 .9924

100,000/1000/50 .3769 .6153 .7839 .9394 .9915
.0106 .0129 .0114 .0057 .0013

50,000/1000/50 .3890 .6264 .7908 .9407 .9913
.0144 .0173 .0151 .0077 .0020

20,000/1000/50 .4073 .6447 .8032 .9443 .9916
.0213 .0240 .0198 .0092 .0022

A( (x-bn)/an)/x

P( max M+ < x)
<j_. J -

.3766/7 .6137/8 .7834/9 .9408/11 .9924/14

.3744 .6128 .7831 .9408 .9924

50,000/250/100 .3732 .6130 .7832 .9399 .9918
.0048 .0065 .0062 .0032 .0008

25,000/250/100 .3784 .6186 .7872 .9410 .9918
.0066 .0088 .0080 .0040 .0010

10,000/250/100 .3870 .6273 .7933 .9427 .9919
.0101 .0118 .0101 .0050 .0013
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TABLE 10

Estimates of P(max M + x) for { : t > 0) In the / o/i queue with 1- 10,

1_.Jf .._
p a .9, using full delete linear regression, with continuity correction 6 - 0

A((x-bn)/an)/X

P( max 4' < x)
i. <nJ

k/n/frepl. .2644/41 .5293/48 .7604/56 .9089/66 .9906/88
.2599 .5272 .7599 .9088 .9906

100,000/1000/50 .2620 .5346 .7678 .9133 .9911

.0070 .0106 .0097 .0059 .0012

50,000/1000/50 .2578 .5275 .7604 .9084 .9901
.0095 .0144 .0129 .0074 .0013

20,000/1000/50 .2628 .5345 .7647 .9095 .9898

.0147 .0209 .0179 .0104 .0020

A((x-bn)/an)/x

P( max M+ < x)
<J<n J -

.2801/48 .5085/54 .7695/63 .9035/72 .9901/94

.2779 .5074 .7693 .9034 .9900

100,000/2000/50 .2861 .5204 .7796 .9085 .9903

.0104 .0142 .0124 .0077 .0015
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Here are some general observations on Tables 3-10. The approximation

of P{ max M + < x} by the exact value of A((x - bn )/an) improves with
l<J<n i n-

greater x, greater n, and lesser p, and is about equally good for Wn,

Vt. and 'Qt . Note that confidence intervals generally cover the true

values (excepting the use of continuity correction 6 - 1/2 for Qt )

especially in the percentile evaluations of Tables 6-10. The bias and con-

fidence interval widths tend to decrease as k increases, and decrease as

x increases in the percentile evaluations. The results for p = .9 are

just about as good as for p - .5. The results for Qt are almost as good

as for W and V t, except that the confidence interval widths are greaternt

for Q , which can be largely attributed to the greatly reduced number of
t

regression data points.

For the W process, the linear regression procedure tends to producen

estimates with slightly smaller biases and confidence intervals than does

the nonlinear regression procedure. Although neither is a clear winner, in

this case the linear regression would appear to be better, if just for the

reason of tlie greater ease and lesser expense it entails. (However, zhe

nonlinear regression problem under consideration is a nice one, and the

linear regression procedure could certainly provide good starting values of

a n, bn  for the nonlinear regression.)

For the Q process, the (null) continuity correction of 6 - 0 is

superior to 6 - .5; and thus results for 6 - .5 are not shown. This is

no surprise in the current case since the approximation of tne exact d.f.

of max M+ by the value of A using exact 6 , b has the same error1<j <...n i n

patterns for Qt as for Wn and V t. The full and partial delete pro-
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cedures give comparable results, so only the estimates of a n b nare

shown for the partial delete procedure.

Som experimentation on the W process (not reported in the tables)
n

using linear regression estimates a b nto arrive at estimates a n'= .

b no - a nln(n'/n) + b nand corresponding percentile evaluations for nt

cycles was performed using n' 1000 and n -250 and 100. The general

pattern of results is that for fixed k, smaller values of n give smaller

confidence intervals but greater biases, unless k is very small. The de-

crease in confidence interval widths is mostly attributable to the use of

more regression data points for smaller n. Again considering the results

reported in the tables for n -1000, in many instances k - 50,000

performs better than k -100,000. All this suggests that increasing the

k/n ratio beyond a certain point may not be worthwhilm. However, optimal

values of k and n are very problem dependent.

Most of the cost in using these procedures derives from the develop-

ment and running of the simulation model. Another substantial portion of

the cost is keeping track of the y ik' s. However this can be done once,

and then empirical distribution functions corresponding to the different

values of n can easily be constructed. Different variations of the re-

gression procedures could be performed for each value of ui. In short, the

variations are not competitors, but rather can be used to help assess the

validity of the results. Any special insight to the problem at hand could

also be used to advantage.
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